Contoh Soal Trigonometri Kelas 10 - Trigonometri dari bahasa Yunani trigonon = "tiga sudut" dan metron = "mengukur"[1] adalah sebuah cabang matematika yang mempelajari hubungan yang meliputi panjang dan sudut segitiga. Bidang ini muncul di masa Hellenistik pada abad ke-3 SM dari penggunaan geometri untuk mempelajari astronomi. Perbandingan Trigonometri Pada Segitiga Sebuah segitiga dengan salah satu sudutnya berupa Sisi AB merupakan sisi miring segitiga Sisi BC merupakan sisi depan sudut Sisi AC merupakan sisi samping sudut Di sini kita akan mengenal istilah matematika baru, yaitu sinus sin, cosinus cos, tangent tan, cosecan csc, secan sec dan cotangent cot, yang mana sinus merupakan kebalikan dari cosecan, cosinus kebalikan dari secan dan tangent kebalikan dari cotangent. Sinus, Cosinus dan Tangent digunakan untuk menghitung sudut dengan perbandingan trigonometri sisi di segitiga. Dengan gambar segitiga diatas, nilai Sinus, Cosinus dan Tangent diperoleh dengan cara sebagai berikut Sudut Istimewa Berikut ini nilai sin, cos, dan tan untuk sudut istimewa 3 Dalam Kuadran Sudut dalam suatu lingkaran, memiliki rentang 0° – 360°, sudut tersebut dibagi menjadi 4 kuadran, dengan masing-masing kuadran memiliki rentang sebesar 90°. - Kuadran 1 memiliki rentang sudut dari 0° – 90° dengan nilai sinus, cosinus dan tangent positif. - Kuadran 2 memiliki rentang sudut dari 90° – 180° dengan nilai cosinus dan tangen negatif, sinus positif. - Kuadran 3 memiliki rentang sudut dari 180° – 270° dengan nilai sinus dan cosinus negatif, tangen positif. - Kuadran 4 memiliki rentang sudut dari 270° – 360° dengan nilai sinus dan tangent negatif, cosinus positif. Perhatikan tabel trigonometri di bawah ini Identitas Trigonometri Dalam suatu segitiga siku-siku, selalu berlaku prinsip phytagoras, yaitu . Pada materi ini, prinsip phytagoras ini menjadi asal pembuktian identitas trigonometri sendiri. bagi kedua ruas dengan , diperoleh persamaan baru . Sederhanakan dengan sifat eksponensial menjadi . Dari persamaan terakhir, subtitusi bagian yang sesuai dengan perbandingan trigonometri pada segitiga, yaitu dan , sehingga diperoleh atau bisa ditulis menjadi . Dari identitas yang pertama, dapat diperoleh bentuk lainnya, yaitu bagi kedua ruas dengan , diperoleh dimana dan , sehingga diperoleh Bentuk ketiga yaitu dibagi dengan menjadi , dimana dan , sehingga diperoleh persamaan . Contoh Soal Trignometri Kelas 10 Pada suatu lingkaran dibuat sebuah segi delapan beraturan seperti gambar di bawah. Jari-jari lingkaran adalah 12 cm. Tentukan a panjang sisi segi-8 b kelililing segi delapan tersebut! Pembahasan Segi delapan tersusun dari 8 buah segitiga sama kaki, dengan kedua kakinya panjangnya 12 cm, sama dengan jari-jari lingkaran. Ambil satu segitiga, a panjang sisi segi-8 Terapkan aturan kosinus sebagai berikut b Keliling segi delapan adalah 8 kali dari panjang sisinya Soal No. 2 Dalam suatu lingkaran berjari-jari 8 cm, dibuat segi-8 beraturan. Tentukan panjang sisi segi-8 tersebut! Pembahasan n = 8 r = 8 cm Disini akan digunakan rumus jadi menentukan panjang sisi dari suatu segi-n dalam lingkaran yang berjari-jari r atau bentuk lain dengan format kedua diperoleh Soal No. 3 Nyatakan sudut-sudut berikut dalam satuan derajad a 1/2 π rad b 3/4 π rad c 5/6 π rad Pembahasan Konversi 1 π radian = 180° Jadi a 1/2 π rad b 3/4 π rad c 5/6 π rad Soal No. 4 Nyatakan sudut-sudut berikut dalam satuan radian rad a 270° b 330° Pembahasan Konversi 1 π radian = 180° Jadi a 270° b 330° Soal No. 5 Diberikan sebuah segitiga siku-siku seperti gambar berikut ini. Tentukan a panjang AC Pembahasan a panjang AC Dengan phytagoras diperoleh panjang AC b sin θ c cos θ d tan θ e cosec θ f sec θ g cotan θ Soal No. 6Sebuah marka kejut dipasang melintang pada sebuah jalan dengan sudut 30° seperti ditunjukkan gambar berikut. Jika panjang marka kejut adalah 8 meter, tentukan lebar jalan tersebut!PembahasanSegitiga dengan sudut istimewa 30° dan sisi miring 8 30° = 1/2sin 30° = BC/ACBC/AC = 1/2BC = 1/2 × AC = 1/2 × 8 = 4 meterLebar jalan = BC = 4 meterSoal No. 7Tentukan besar sudut C pada segitiga berikut! PembahasanDataAC = 5/3 √6 cmBC = 5 cmDari data yang ada bisa ditentukan besar sudut B terlebih dahuluJumlah sudut segitiga adalah 180°sehingga besar sudut C adalah∠C = 180 − 60 + 45 = 75°Soal No. 8Diberikan sebuah segitiga sama sisi ABC seperti gambar berikut. Panjang TC adalah 12 panjang sisi segitiga tersebut!PembahasanΔ ABC sama sisi, sehingga sudut A = sudut B = sudut C = 60° Jika diambil titik ATC menjadi segitiga, maka didapat gambar 60° pada segitiga ATC adalah perbandingan sisi TC sisi depan dengan sisi AC sisi miring sehinggaSoal No. 8Segitiga PQR dengan sisi-sisinya adalah p, q dan r. Jika p = 16 cm, r = 8√2 cm dan ∠ R = 30° tentukan besar ∠ P !PembahasanSegitiga PQR Berlaku aturan sinusBesar sudut P dengan demikian adalah 45°Soal No. 9Diketahui segitiga ABC dengan panjang AC = AB = 6 cm. Sudut C sebesar 120°.Tentukan luas segitiga ABC!Soal No. 10Segitiga samakaki ABC dengan sudut C = 30°. Jika panjang BC = 12 cm, tentukan panjang AB!PembahasanDengan aturan kosinusdiperolehSoal No. 11cos 315° adalah....A. − 1/2 √3B. − 1/2 √2C. − 1/2D. 1/2 √2E. 1/2 √3Soal Ebtanas 1988PembahasanSudut 315° berada di kuadran IV. Nilai-nilai cosinus sudut di kuadran IV memenuhi rumus berikutcos 360° − θ = cos θSehinggacos 315° = 360° − 45° = cos 45° = 1/2 √2 Soal No. 12DiketahuiPQ = 6 cm, QR = 9 cm dan ∠PQR = 120°Tentukan kelililing segitiga PQRPembahasanMencari panjang PRKeliling segitiga= 6 cm + 9 cm + 3√19= 15 + 3√19 cmSoal No. 13Seorang anak berdiri 20 meter dari sebuah menara seperti gambar berikut. Perkirakan ketinggian menara dihitung dari titik A! Gunakan √2 = 1,4 dan √3 = 1,7 jika 60 ° adalah √3, asumsinya sudah dihafal. Sehingga dari pengertian tan sudut Tinggi menara sekitar 34 No. 14Sebuah segitiga nilai dari sin β = 2/3. Tentukan nilai dari a cos βb tan βPembahasansin β = 2/3 artinya perbandingan panjang sisi depan dengan sisi miringnya adalah 2 3Gunakan phytagoras untuk menghitung panjang sisi yang ketiga sisi sampingSehingga nilai cos β dan tan β berturut-turut adalahSoal No. 15Perhatikan gambar segitiga di bawah ini!Tentukan perbandingan panjang sisi AB dan BC!PembahasanPada segitiga berlakuSehingga perbandingan AB BC = √2 √3sekian ya pembahasan tentang contoh soal trigonometri kelas 10. semoga dapat membantu
perbandingansisi segitiga tersebut adalah 2.3.4. jika keliling segitiga tersebut 27 cm, tentukan panjang masing-masing sisinya. Mengingat bahwa. Sisi-sisi segitiga memiliki perbandingan 2: 3: 4 yang berarti 2 + 3 + 4 = 9. 3/9 x 27= 6. 4/9 x 27 = 12. Panjang sisi-sisinya adalah 6cm, 6cm, dan 12cm. 10. Posted in Matematika {{dataObj.settings SOAL RASIO TRIGONOMETRI PADA SEGITIGA siswa bernama Andik dengan tinggi 165 cm mengamati sebuah gedung dengan sudut elevasi 60 0 . Jarak antara gedung dengan siswa tersebut adalah 10 m. Andik ingin menghitung tinggi gedung tersebut Jawab Untuk mencari tinggi gedung kita gunakan tan 60 o , sehingga didapat tan60 = tinggigedung jarak siswadangedung ⟺ √ 3 = t 10 ⟺ t = 10 √ 3 Jadi tinggi gedungnya 10 √ 3 segitiga siku-siku. Diketahui nilai dari sin β ¿ 23 . Tentukan nilai dari cos βJawab sin β ¿ 23 artinya perbandingan panjang sisi depan dengan sisi miringnya adalah 2 3Gunakan phytagoras untuk menghitung panjang sisi yang ketiga sisi samping Sehingga nilai cos β adalah cos β = sisisampingsisimiring = QR PR = √ 53 sebuah segitiga sama sisi ABC seperti gambar berikut. Panjang TC adalah 12 panjang sisi segitiga tersebut!Jawab Δ ABC sama sisi, sehingga sudut A = sudut B = sudut C = 60° Jika diambil titik ATC menjadi segitiga, maka didapat gambar berikut. Jikakalian belum memahaminya dengan baik, lakukanlah kegiatan berikut ini. Contoh Suatu segitiga panjang sisi-sisinya diketahui adalah 6 cm, 12 cm, dan 15 cm. Tentukanlah jenis segitiga tersebut Penyelesaian: 15 2 = 15 × 15 = 225 6 2 + 12 2 = 36 + 144 = 190 Karena 15 2 6 2 + 12 2 maka jenis segitiganya adalah segitiga tumpul.Trigonometri memiliki beragam jenis studi kasus. Beberapa contohnya adalah seperti yang akan kita pelajari pada pembahasan ini. Soal dan Pembahasan. Pada sebuah segitiga KLM, dengan siku-siku di L, diketahui sin M = 2/3 dan panjang sisi KL = √10 cm. Tentukan panjang sisi segitiga yang lain dan nilai perbandingan trigonometri lainnya!
Segitiga Sama Sisi – Postingan ini menjelaskan mengenai rumus luas segitiga sama sisi dan rumus keliling segitiga sama sisi dengan lengkap beserta segitiga sama sisi akan dijelaskan lebih lengkap beserta contoh soal dan pembahasannya sebagai juga Bentuk Bangun Datargambar segitiga sama sisiSegitiga sama sisi adalah bangun segitiga yang memiliki ketiga sisinya memiliki panjang yang sama dan ketiga sudutnya memiliki besar sudut yang membedakan segitiga ini dengan yang lain adalah semua sisinya memiliki panjang yang segitiga sama sisi mempunyai 3 buah sudut dengan besar sudut berukuran 60°.Jumlah sudut segitiga sama sisi adalah 180°.Baca Juga Rumus Luas Bangun DatarSifat Segitiga Sama SisiCiri ciri segitiga sama sisi yaitu • Memiliki tiga sisi dengan panjang yang sama • Memiliki tiga sudut dengan besar yang sama yaitu 60° • Memiliki tiga simetri putar • Memiliki tiga simetri lipat • Memiliki tiga sumbu simetriRumus Luas Segitiga Sama SisiLuas segitiga sama sisi yaitu L = ½ × a × tatauL = a² ÷ 4 × √3Keterangan L = luas a = alas t = tinggiRumus Keliling Segitiga Sama SisiKeliling segitiga sama sisi yaitu K = sisi a + sisi b + sisi catauK = 3 × sisiKeterangan K = kelilingRumus Tinggi Segitiga Sama SisiCara mencari tinggi segitiga sama sisi yaitu t = 2 × L ÷ aataut = sisi × ½ √3Keterangan t = tinggi L = luas a = alasRumus Alas Segitiga Sama SisiRumus mencari alas segitiga sama sisi yaitu a = 2 × L ÷ tKeterangan a = alas L = luas t = tinggiBaca juga Rumus Alas SegitigaContoh Soal Segitiga Sama SisiSetelah mempelajari mengenai rumus rumus segitiga, maka selanjutnya akan diberikan contoh soal untuk lebih memahami mengenai segitiga soal luas segitiga sama sisi akan diberikan sebagai Sebuah segitiga memiliki panjang sisi berukuran 8 cm. Segitiga tersebut memiliki panjang sisi yang sama pada ketiga sisinya. Tentukanlah keliling dari segitiga tersebut dengan tepat! Diketahui a,b,c = 8 cm Ditanya K ? Jawab Cara mencari keliling segitiga sama sisi K = a + b + c K = 8 cm + 8 cm + 8 cm K = 24 cmJadi, segitiga tersebut memiliki keliling berukuran 24 Terdapat segitiga yang semua sisinya memiliki panjang yang sama. Panjang sisi dari segitiga tersebut adalah 12 cm. Hitunglah keliling dari segitiga tersebut! Diketahui a,b,c = 12 cm Ditanya K ? Jawab Rumus keliling segitiga sama sisi K = 3 × sisi K = 3 × 12 cm K = 36 cmJadi, keliling segitiga tersebut adalah 36 Diketahui sebuah segitiga memiliki ketiga sisi yang sama panjang. Segitiga tersebut memiliki panjang sisi 6 cm. Berapakah keliling dari segitiga tersebut ? Diketahui s = 6 cm Ditanya K ? Jawab Keliling segitiga sama sisi K = 3 × sisi K = 3 × 6 cm K = 18 cmJadi, keliling dari segitiga tersebut berukuran 18 Sebuah segitiga mempunyai panjang alas berukuran 15 cm dan tinggi 8 cm. Dari alas dan tinggi tersebut, tentukan luas dari segitiga tersebut! Diketahui a = 15 cm dan t = 8 cm Ditanya L ? Jawab Cara menghitung luas segitiga sama sisi L = ½ × a × t L = ½ × 15 cm × 8 cm L = 7,5 cm × 8 cm L = 60 cmJadi, luas dari segitiga tersebut berukuran 60 Diketahui sebuah segitiga sama sisi memiliki panjang alas berukuran 24 cm. Dari panjang alas tersebut, berapakah luas dari segitiga tersebut! Diketahui a = 24 cm Ditanya L ? Jawab Rumus mencari luas segitiga sama sisi L = a² ÷ 4 × √3 L = 24 cm² ÷ 4 × √3 L = 576 cm² ÷ 4 × √3 L = 144 cm² × √3 L = 144 √3 cm²Jadi, segitiga tersebut memiliki luas berukuran 144√3 cm²6. Terdapat sebuah segitiga mempunyai panjang alas 12 cm. Berdasarkan panjang alas tersebut, tentukanlah luas dari segitiga tersebut! Diketahui a = 12 cm dan t = 7 cm Ditanya L ? Jawab Luas segitiga sama sisi adalah L = ½ × a × t L = ½ × 12 cm × 7 cm L = 6 cm × 7 cm L = 42 cmJadi, luas dari segitiga tersebut adalah 42 Sebuah segitiga memiliki luas berukuran 100 cm dengan panjang alas 25 cm. Hitunglah luas segitiga tersebut dengan benar! Diketahui L = 100 cm dan a = 25 cm Ditanya t ? Jawab t = 2 × L ÷ a t = 2 × 100 cm² ÷ 25 cm t = 200 cm² ÷ 25 cm t = 8 cmJadi, segitiga tersebut mempunyai tinggi berukuran 8 Diketahui segitiga mempunyai alas dengan panjang 30 cm dan mempunyai luas 180 cm. Berapakah luas dari segitiga tersebut ? Diketahui L = 180 cm dan a = 30 cm Ditanya t ? Jawab t = 2 × L ÷ a t = 2 × 180 cm² ÷ 30 cm t = 360 cm² ÷ 30 cm t = 12 cmJadi, tinggi dari segitiga tersebut adalah 12 Sebuah segitiga memiliki panjang alas berukuran 40 cm dan memiliki luas berukuran 300 cm. Tentukan tinggi segitiga tersebut dengan tepat! Diketahui L = 300 cm dan a = 40 cm Ditanya t ? Jawab t = 2 × L ÷ a t = 2 × 300 cm² ÷ 40 cm t = 600 cm² ÷ 40 cm t = 15 cmJadi, segitiga tersebut mempunyai tinggi berukuran 15 Pada sebuah segitiga memiliki luas 120 cm² dan memiliki tinggi 10 cm. Carilah panjang alas dari segitiga tersebut dengan benar! Diketahui L = 120 cm² dan t = 10 cm Ditanya a ? Jawab a = 2 × L ÷ t a = 2 × 120 cm² ÷ 10 cm a = 240 cm² ÷ 10 cm a = 24 cmJadi, panjang alas dari segitiga tersebut adalah 24 Terdapat sebuah segitiga mempunyai tinggi 16 cm dan memiliki luas 320 cm². Berdasarkan luas dan tinggi tersebut, tentukan panjang alas dari segitiga tersebut ? Diketahui L = 320 cm² dan t = 20 cm Ditanya a ? Jawab a = 2 × L ÷ t a = 2 × 320 cm² ÷ 20 cm a =640 cm² ÷ 20 cm a = 32 cmJadi, segitiga tersebut mempunyai alas berukuran 32 Diketahui sebuah segitiga memiliki tinggi berukuran 14 cm dan memiliki luas 210 cm². Hitunglah panjang alas dari segitiga tersebut dengan tepat! Diketahui L = 210 cm² dan t = 14 cm Ditanya a ? Jawab a = 2 × L ÷ t a = 2 × 140 cm² ÷ 14 cm a = 280 cm² ÷ 14 cm a = 20 cmJadi, panjang alas dari segitiga tersebut adalah 20 luas dan keliling segitiga sama sisi sudah dijelaskan dengan lengkap diatas. Semoga tulisan ini bisa bermanfaat bagi para pembaca. Jika terdapat kekurangan atau kesalahan dalam penulisan dan ingin memberikan kritik atau saran, bisa ditulis di kolom Terkait Jenis Jenis SegitigaGambar Segitiga Sama KakiGambar Segitiga SembarangGambar Segitiga Siku SikuGambar Segitiga TumpulGambar Segitiga Lancip .